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DEVELOPMENT OF THERMOCAPILLARY CONVECTION IN A FLUID CYLINDER 

AND CYLINDRICAL AND PLANE LAYERS UNDER THE INFLUENCE 

OF INTERNAL HEAT SOURCES 

V. K. Andreev, A. A. Rodionov, and E. A. Ryabitskii UDC 532.516:536.24.01 

Under weightless conditions, neither external forces nor forces associated with self- 
gravitation are strong enough to cause convective motion. However, convection may develop 
due to the fact that surface tension is dependent on temperature. 

The studies [i-4] investigated the conditions for the development of convection in a 
fluid during the heating of a solid or free surface. Here, we study the stability of the 
equilibrium state which develops in a liquid cylinder and cylindrical and plane layers under 
the influence of constant internal heat sources. Explicit formulas are obtained for the 
critical Marangoni numbers. It is shown that allowance for deformation of the free surface 
leads to a decrease in stability and the appearance of a discontinuity on the neutral curve. 
Also, the equilibrium state of the plane layer is more stable than in the analogous Pearson 
problem [i]~ 

!. Fluid Cylinder. Let a quiescent fluid cylinder contain constant internal heat 
sources of intensity q. Then the equilibrium state is described by the formulas 

u = ~ = w = O, p = c o n s t ,  O ( r )  =--qr~/(4%) ~ c o n s t .  ( 1 . 1 )  

Here, (u, v, w) are components of the velocity vector in the cylindrical coordinate system 
(r, ~, z); p is pressure; @ is temperature; X = const is the diffusivity of the fluid~ 

As the characteristic scales of length, velocity, pressure, and temperature, we choose 
the quantities b, ~/b, pv2/b2, and v~b/x (b is the radius of the cylinder, ~ is kinematic 
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viscosity, p is the density of the fluid, u = -@r(b) = qb/2x). Equations describing small 
perturbations of a random thermocapillary motion in cylindrical coordinates were derived 
in [5]. Assuming these perturbations to be dependent on ~, z, and t in accordance with 
the law exp [i(mT + az - aiCt)], we obtain amplitude equations for the equilibrium state 
( i . i ) :  

-rtu+ p ' =  [ ~ ']' ~ -T(~u) - - v - v ;  

~v+_~ _p  = (~) ,  +2~m ~ e ;  

i (~w')'; ~ W  -~ io~P = T 

( ~ U ) '  + i r n V  + i ~ W  = O; 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

I ~ T - - ~ U = + ( ~ T ' )  ' ( 0 < ~ <  i); ( 1 . 6 )  

V' V im ~ ' - T + T U -  - -  Ma(T + (9oR); 

I 

io~U + W '  = - -  io~Ma ( r  + OoR); 

- - i a C R  = U; 
p 

- p + 2 u "  = w ~  (I - o~ - ~ )  n - M~ (r  + (9on); 

T ' - F B i T + ( ( 9 ~ + B i O '  0 ) R = 0  ( ~ = l ) ;  

IuI, IvI, IwI, IPI, ITI < oo (~ = 0), 

(1.7) 

(1.8) 
(1.9) 

(l.10) 
(l.11) 
(1.12) 

where U, V, W, P, and T are perturbations of the components of the velocity vector, pressure, 
and temperature; R is the deviation of the boundary from its unperturbed state with respect 
to a normal; r = b; $ = r/b; 00 = XO/vYb; D = a2 + m2/$ 2 - iaC; Ma = y~b2/pvX is the Maran- 
goni number; K = -do/dO = const > 0 is the temperature coefficient of surface tension, so 
that o = o0 - ~((9- (9(b)); We = bo0/pvX is the Weber number; a is the wave number along the 
z axis; m is the spectral mode with respect to the angle q0; C is a complex parameter; Bi 
is the Biot number; (90'(1) = (90"(1) = -i; a prime denotes differentiation with respect to ~. 

We adopt the principle of monotonic change of the perturbations, so that the boundary 
of stability is determined by values of C = 0 in (1.2)-(1.4), (1.6), (1.9). The condition 
of the existence of a nontrivial solution of the problem makes it possible to find a criti- 
cal value Ma(a, m, We, Bi) at which the equilibrium becomes unstable. 

Let us first examine an axisymmetric perturbation (m = 0). The problem for the func- 
tion V is separate and does not contain Ma. After we exclude W and P, we obtain the follow- 
ing problem for the function U: 

d 2 t d ( t ) ;  (1.13) L~U=O (0<~<I), n:~+ ~ d~ a'~ +~Z 

U(i) = 0, U"( i )  + U'(l)  ---- --~- Ma[T(i)  - -  R]; ( 1 . 1 4 )  

U" ( i )  + 2U"(I) --  (t  - -  3~z~)Y'(t) + ~- We(i - -  a~)R H- a ~ Ma [T(I) - -  R] = 0; ( 1 . 1 5 )  

: V ( O ) < o o ,  ( ~ U ) ' / ~ < o o .  ( 1 . 1 6 )  

We i n t r o d u c e  t h e  f u n c t i o n  ~ (g ) .  so t h a t  

L~r = 0 (0 < ~ < i), r < ~ ,  (~r < ~ ,  
, ( i )  = r  + r  - i = 0. 

The solution of the last problem has 

[Iz,2(X ) are modified Bessel functions of 
and (1.16) that U = -a 2MalT(1) - R] ~(~). 

the form 

I~(~) +Im(mD ( i  17) 

the f i r s t  k i n d ] .  We f i n d  from ( 1 . 1 3 ) ,  ( 1 .14 ) ,  
The p e r t u r b a t i o n  of  temperature T i s  found from 
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the solution of boundary-value problem (i.6), (i. II), (i.12), and T(1) = f(~)R with a known 
function f(a). Using these relations and the properties of Bessel functions, we obtain the 
following representation from boundary condition (1.15) 

( 1 - - a ~ ) ( a s +  Bi) (1.18) 
Ma = ( a ~ - l ) F ( a , s ) §  G ( ~ , s ) W e - ~ P r  - ~ '  

where 

I~ (a) F a ( +  ) 1 I _~ 
s - -  x.(a); -if - - s  --g&-S--Tf;  G =  ( l - -as) (a~--a~s  ~ + s 2 - a s ) .  

For azimuthal perturbations, a = 0, and the problem for W is separated. It is easy 
to see that W ~ 0. The pressure perturbation satisfies the equation P" + P'/$ + m2P/~ 2 = 
0, following from (1.2), (1.3), and (1.5). With allowance for the condition P(0) < ~, the 
function P = Cl~ m (C l = const) and Eqs. (i~2), (1.3) take the form U" + U'/~ - (m 2 + I)U/ 
$2 _ 2imV/g2 = Cmmsm-~, V" + V'/$ - (m 2 + I)V/$ 2 + 2imU/$ 2 = C~im$ m-m. The solution of this 
system is written as 

t C ~ + ~  U = -7-(  1 + 2C~) + + C ~  ~ - * ,  

i 9 _ ~ C ~ - ~  C~,C a - - c o n s t .  V =  T(-C2 C 0 ~ + ~ + - 2  a~ , 

For the temperature perturbation, we find 

C~ + 2C2 ~m+4 C~ ~m+2 C4 const.  
T = Ca~ ~ 32m @ 64 - - 8 m  +-"-"'8~ ' = 

Continuity equation (1.5) leads us to the relationship between the constants C~ and C2: 
C~ = -2(m + I)C2. Substitution of the explicit expressions for U, V, P, and T into boun- 
dary conditions (1.7), (1.9)-(1.11) makes it possible to determine the critical value of 
Ma: 

It is clear that 

Ma (m) --  8 (m -i- t) (m--2) (m @ Bi) 
m ~- t6 (m q- 2) We - 1  

(m=/:~). (1 .19)  

m i n M a ( m ) = M a ( 2 ) - -  4S(Bi+2)  ( 1 . 2 0 )  
m 1 @ 32 We - >  

At m = 1 and a = 0, the solution of problem (1.2)-(1.12) has the form W = 0, U=V=P= 
0, T = C4$, R = C 4, which corresponds to displacement of the free surface without deforma- 
tion in the plane z = const. If we immediately assume the surface to be undeformable, then 
this problem has a nontrivial solution and Ma = 48(1 + Bi). It is obtained formally from 
(1.19) with m = 1 and We = ~. 

In the general case, we can use continuity equation (1.5) to exclude the function W. 
We will seek the solution of the resulting problem in the form 

(u = Ma [T(1) + O0 
tisfy the system 

' ( 1 )R] ) .  The function f = C11m(~) (C I = const), while ~(~) and ~(~) sa- 

which was solved in [6]. 

m" =- t~ 2ira . , r 9 

r + _V~ _ ~2 + - - V - / r  - 7 *  = c j =  (~b, 

1 , [ ,n ~- + t~  . 2~,n i,n 
~" + T r _ ~2  + --~" ) * -'- T ~ = T c J =  (ab, 

The s o l u t i o n  f o u n d  t h e r e  c a n  be  w r i t t e n  i n  t h e  s i m p l e r  f o r m  

c2 ca I . , - t  ( ~ ) +  c~ 
= ~ s=+l (~)  + -~  T ~r= (a~), 

iC 2 iC s 
- 2 1~+1 (~)  + y I~_~ (~)  

(1.22) 

with the constants C2, C~. 
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The temperature perturbation is found from (1.6) 

Y = CJm (e~) - -  ~ g=U :(~) D ( ~ ,  ~x) d r ,  ( 1 . 2 3  ) 
0 

where D = Im(~)Km(~) - Km(~)Im(~X) ; K m is a modified Bessel function of the second kind; 
C~ = const. 

After (1.21) and (1.23) are inserted into boundary conditions (i.i0) and (i.ii) 

Ma (a, m) . . . . .  (l - ~ - n,~) F~ § c ~  We -~  (1.24) 

The constants CI, C2, C 3 are determined from boundary conditions (1.7)-(1.9), which with 
allowance for (1.21) are rewritten in the form~(1) = 0, ~"(i) + ~'(i) = _~2 _ m 2, ~'(i) - 

~(i) = -im. 

It should be noted that tim Ma(~, m) = Ma(m) where Ma(m) is determined from (1.19). 
~0 

We performed numerical calculations using Eqs. (1.18) and (1.24). In the latter case, m = 
i, the integral is calculated explicitly through the Bessel functions I0(~), Iz(~). These 
formulas are rather awkward and are not presented here. 

Figure i shows the dependence of Ma on the wave number ~ for axisymmetric perturbations 
(m = 0). Curves 2 and 3 correspond to the case of an undeformed free boundary, when We = =. 
The minimum critical Marangoni number Ma c = 48 for Bi = 0 (curve 3) and ~c = 0. It is in- 
teresting to note that, in accordance with (1.20), the minimum value of Ma c for azimuthal 
perturbations is also equal to 48 for the same parameter values. If Bi = 2 (curve 2), then 
Ma c = 178.7 and ~c = 2.1. The minimum value of Ma c increases with an increase in heat trans- 
fer. 

If We ~ ~, then the denominator in Eq. (1.18) may vanish at a certain ~*. In particu- 
lar, for We = i0 ~, the graph of Ma(~) has a vertical asymptote at =* = 1.006, Ma(~) ~ 0 at 
E [i, ~*), and Ma(~) § at ~ § ~* - 0. For Bi = 0 (curve 4), the function Ma(~) reaches 

its positive maximum 48.8 in the interval a > ~* at ~ = 0.8, while it reaches its positive 
minimum Ma c = 57.7 for ~ > ~* at ~c = 1.2. If Bi = 2 (curve i), then Ma c = 178.7 at ~c = 
2.1. 

It should be noted that the curves of Ma(a) merge for We + =. Also, Ma(1) = 0 at all 
We ~ ~ and Ma(~) - 8~(~ + Bi) at large ~ and We = ~. The same asymptote is obtained exactly 
for azimuthal perturbations. This follows from Eqs. (1.19) at m + ~ (We = =). Also valid 
is the analogous asymptote for the equilibrium of a plane layer bounded by free surfaces 
[ 3 ] .  

In the case m = i, all of the curves Ma(~, i) establishing the boundary of stability 
have a minimum. Discontinuities are absent, and the graphs for We = ~ and i04 are nearly 
indistinguishable. Curve 2 in Fig. 2 corresponds to a thermally-insulated boundary Bi = 
0, and the minimum value is equal to 47.38 at = = 0.66, Ma(O, i) = 48. With an increase 
in heat transfer, the minimum is shifted in the shortwave direction and is equal to 124.1 

Ma 'L r 
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for Bi = 2 (curve I), where a = 1.27 and Ma(0, I) = 144. The curves Ma(a, m) for fixed m 
2 and We = = are located above the curves Ma(a, i). Thus, comparing Figs. I and 2, we con- 

clude that the most dangerous perturbations are those for which m = i. 

2. Cylindrical Layer of Fluid. We will assume that the fluid is located on a solid 

cylindrical surface r = a and occupies the region a ~ r s b, 0 ~ ~ ~ 2g, -~ < z < ~. We 
will write the equilibrium state, satisfying the condition of thermal insulation on the in- 

terior of the cylinder 0 ~ r ~ a, in the form 

u = v = w = 0, p = const,  O(r)  q a ~ l n + - -  q r 2 = 2 - ~  ~ + const.  (2 .1 . )  

In problem (1.2)-(1.12) concerning small perturbations, only Eq. (1.6) changes: 

~ T + ( d @ _ ~ ) U = + ( ~ T ' )  ' (d < ~ < t ) ,  ( 2 . 2 )  

where d = a/b < i, while boundedness conditions (1.12) are replaced by conditions of adhesion 
and thermal insulation on the inside of the cylinder 

u = v = w = r '  = o (~ = d ) .  ( 2 . 3 )  

Also, it is necessary to put 001(i) = d 2 - i, O0"(i) = -(d 2 + i) in boundary conditions 

(i.7), (1.8), (i.i0), and (i.ii). 

Here, for axisymmetric perturbations, instead of (1.17) we have 

= Cz 2~fo ( a ~ ) - - C ~  - Ko (a~) + C J ~  (a~) + C~K~(a~) ( 2 . 4 2  

[Kj(x) are modified Bessel functions of the second kind]. 

The constants C I, .... C 4 are found from conditions (1.8), (1.9), (2.3) 

~(d) = 0, ~ ' (d)  = 0, @(1) = 0, ~ " (1 )  + @ ' ( 1 )  - -  f = 0. ( 2 . 5 )  

D e t e r m i n i n g  t h e  p e r t u r b a t i o n  o f  t e m p e r a t u r e  T f r o m  ( i . 1 1 ) ,  ( 2 . 2 ) ,  and  ( 2 . 3 )  and  i n s e r t -  
i n g  the result into boundary condition (i.i0), we find 

(t - -  2 )  (el ,  + B i l i )  ( 2 . 6 )  

Ma = ~ ( t - - ~ ) a ( ~ , d ) + F ( ~ , d ) W ~  - ~ '  

where 

l~ = I~(a)K~(~zd) - -  II(~zd)Kl(a); l, = II(ad)Ko(cZ ) q- Io(a)Kl(ad);  
t 

G (a, d o = S (d2 - -  Ti) ~ (~) [K~ (aT) 11 (ado + K1 (ad) I o (a~)] d~; F(~, d) = 
d 

= [ , "  (1) - -  3(t  + a~)~;'(l) + 31 [(t  + di)12 + a ( d  ~ - -  t)/~1. 

The integral G(~, d) can be expressed explicitly in terms of modified Bessel functions. 
It is awkward and is not presented here. It can be shown that at d + 0, Eq. (2.6) becomes 
(1.18). For azimuthal perturbations, we seek the functions U, V, and P in the form (1.21), 
where T = (i/2)[-mC1~ m+z + Cig -m-l + Ca$ m-l+ mC~ -m+l], ~ =-(i/2) [(m +~2) • Cl~ m+1 + 
Ci~-m-1 - c~m-1+ (m- 2)C~$ -m+1, f = CI~ TM + C2~ -m (m ~i). The constants C l .... , C 4 are 

found from the boundary conditions (d) = ~(d) = (I) = ~'(i) - 4(1) + im = O. We obtain 
the following for the critical Ma 

M a  = (l  - ~.~) [,~ (d m - 1  - -  d - ~ - t )  - -  m (d " - 1  + d . . . .  I)1 
( l  - -  m 2) G (m, d) + F (m, d) We - 1  

1 

d 

F = [(2 -- m)(re q- I )C ,  + (2 + m ) ( t  -- rn)C 4 -- (re + t )C 2 q- (m - -  t)  • 

X C a @ t l  [re(d" - -  d-m-~)(d 2 - -  1) - -  (dm -{- d -m-z  ) (d ~" + t ) l .  

(2.7) 

If m = i, then a nontrivial solution exists only at We = = and 

Ma =- (i - -  d -2 - -  (t :- d-2)Bi)/G(l,  d). (2.8) 
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Here it is also easily shown that Eq. (2.7) changes into (1.19) at d + 0, while the limiting 
value of (2.8) is 48(1 + Bi). 

In the general case ~ ~ 0, m ~ 0, we make the substitution (1.21): 

C 1 C. C a 
I = c J ~  (~) + C.,K~ (~b, ~ = -~ U~ (~b + -p ~K~ (~) + ~ [~+~ (~) + 

C~ C.~ C~ 
�9 "l- T Km+l ( ~ )  -l- T Irn--~ (r q - ~  Krn-~ (a~), 

iC a iC 4 , iC 5 iCe, 
~ = - ~ I~+~ (~D - - ~  K . ~ ,  ( ~ )  + ~ I~_~ ( ~ )  + 7 K~_~ (~), 

where the constants CI, 
~'(i) - ~(i) + im = 0, ~"(i) + ~'(i) + ~2 + m 2 = 0. 

Following the reasoning in Part i, we obtain 

M a  ~ �9 
( t  - -  ~a - -  mz) Gm ~ F m  We--t ' 

where 

.... C 6 are found from the system ~(d) = ~(d) = ~'(d) = ~(i) = 0, 

( 2 . 9 )  

d t t t ll = I m  (~z) K.~ (r162 - -  K~ (~d) I.~ (c~); 12 = K~  (r162 I.n (ad) - -  Im (u) Krn (c~d); 
1 

a~  = S (d~ --  ~-) ~ (~) [K~ ( ~ )  ~ (~d) -- K~ (~d) [~ (~ ) l  d~; F~ = t - - f0)  + 
d 

+ 2~p'(t) q- 1] [~/l(d 2 - -  1) - -  1,~(d ~ -~ 1)1. 

The limiting value of Eq. (2.9) at d + 0 coincides with Ma (1.24) for a completely fluid 
cylinder. As an example, Fig. 3 shows the results of calculation of the critical values 
of Ma for axisymmetric perturbations by means of Eq. (2.6) with d = 0.2. Curve 1 (Bi = 0, 
We = ~) has the minimum Ma c = 93 at ~c = 0, while curve 2 (Bi = 2, We = ~) reaches the mini- 
mum 260 at ~c = 2.66. If We ~ ~, then the denominator in (2.9) vanishes at ~ = ~* and ~* 
i, when We + ~. For We = 104 and ~* = 1.0014, the curve 3 (Bi = 0) reaches the maximum 95 
at ~ = 0.88 on the interval 0 ~ = < ~*, while the minimum Ma c = 100.5 at a = 1.06. When 
Bi = 2, then on curve 4 the minimum Ma c = 260 at a c = 2.66. 

With an increase in the wave number (or We), the curves Ma(~, We) rapidly converge and 
Ma - 8~(~ + Bi), when We = =. 

It is evident from a comparison of the curves in Figs. i and 3 that asymptotic perturba- 
tions of the cylindrical layer are more stable than analogous perturbations of the fluid 
cylinder. This can be attributed to the stabilizing effect of viscous forces near the solid 
wall. The curve in Fig. 4, showing the dependence of the minimum critical values of Ma c on 
the parameter d, illustrates the situation being examined Mac(0) = 178.7. The same conclu- 
sion is valid for m e i. 

3. Plane Layer. The equilibrium state of a plane layer of fluid bounded by a solid 
lower boundary z = 0 and a free surface z = s is described by the formulas 

u = v = w = 0, p = const, @(z) = --qz~/2% + const.  ( 3 . 1 )  

As the characteristic ~e~perature, velocity, and pressure, we take the quantities os 
v/s pv2/s where y = qs The boundary-value problem for small perturbations of the equi- 
librium state (3.1) can be reduced to the following (~ = z/s 
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P ~ i  - -  k 2 P  = O, W i r  - -  M - W  = P ~ ,  T r  - -  k 2 T  = - - z W  ( 0 <  ~ < 1 ) ;  

w = w ~ =  T ~ = 0 ( ~ = 0 ) ;  

W~ + k 2 MapT + Map(2W~ - -  P) W e p  ~ = 0; 
Bip + i 

T~ + BipT + k ~ . z ( 2 W ~  - -  P) We~ -~ = 0; 

w = 0 (~ = l ) .  

Here  Wep = c0s  Map = YKs k 2 = c~ 2 + ~21 
d i r e c t i o n s ,  r e s p e c t i v e l y ;  k i s  a wave number .  

The s o l u t i o n  o f  p r o b l e m  ( 3 . 2 )  has  t h e  fo rm 

( 3 . 2 )  

( 3 . 3 )  

(3.4) 

(3.5) 

(3.6) 
and $ a r e  wave numbers  in  t h e  x and y 

c, ( ~h k~ / 
P = C~ sh k~ + C2 ch k~, W = - f  ~ sh ./C~ - -  2k ] + 

+ -~- ~ ch k~ - -  -~K-/+  C3 sh k~ + C: ch k~, 

C, ~ k ~ c h k  ~ ~ s h k ~ _  i ~ c h k ~ )  T == ~ -  ( 3  ~' sh k~ - + "K 

+ 

+ 

C2 3 }o sh k~ + ch k~ - -  -~- + ~ ;~ ch 14 - -  

c3 1 1 i ~2chk~ + ~-g - ~ s h k ~ - -  ~ -~chk~- -  -y  - ~  -~.~ chk~ - -  

I ~ 2 s h k ~ ) + C s s h k ~ + C  6chk~. - -  sh k ~  - -  

Satisfying boundary conditions (3.3)-(3.6), we obtain 

Map = 8k 2 (k -- sh k. ch k) (ch k. Bip + k sh k) ( 3 . 7 )  

2 k4 ' " s h 3 k + k 2 s h k - - k c h k . s h 2 k + - ~  s h k - - k a c h k + 8 k 3 ( c h k - - k s h k )  W e ;  1 

F i g u r e  5 shows t h e  r e l a t i o n  Map(k) c a l c u l a t e d  f rom Eq. ( 3 . 7 ) .  Curve  1 (Bi  D = 0, We D = 
~)  does  n o t  h a v e  a minimum f o r  any  k > 0, Map(0)  = 80. Along c u r v e  2 (Bip  = 2,-Wep = ~)~  
t h e  minimum i 9 4 . 3  i s  r e a c h e d  a t  t h e  p o i n t  k = 2 . 1 8 .  I f  t h e  s u r f a c e  i s  d e f o r m a b l e ,  t h e n  a l l  
o f  t h e  c u r v e s  Map(k) h a v e  a d i s c o n t i n u i t y ,  as  in  t h e  c a s e  o f  a c y l i n d r i c a l  l a y e r  o r  f l u i d  
cylinder. Thus, at Wep = 104 , the discontinuity occurs at the point k* = 0.17. At 0 ~ k < 
k*, the critical Marangoni number is nonpositive and Ma (k) + -~, k + k* - 0. Curve 3 
(Bip = 0, Wep = 104 ) has the minimum 81.2 at k = 0.59. PFor curve 4 (Bip 2, Wep = 104), 
the-minimum Map = 194.3, when k = 2.18. 

The study [i] examined the problem of the development of thermocapillary convection 
under the influence of a pressure gradient at the boundaries of a layer with Wep = ~. Curve 
5 was taken from this study and corresponds to Bip = 2. Since line 2 is located above 5 
for all k > 0, then the equilibrium state which develops under the influence of constant 
internal heat sources will be more stable. 

It should be noted that at Wep = ~, all of the cruves (including curve 5) have the 
same asymptote when k + =: MaD(k) - 8k(k + BID). As was noted above, the critical Marangoni 
numbers for the cylinder and cylindrical layer-have the same asymptote for short waves. Thus, 
the critical numbers for shortwave perturbations cease to depend on the type of boundary con- 
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ditions [3] or equilibrium state or on the dimensions and geometry of the region occupied 
by the fluid. 

It is not hard to show that with a+ ~(d § i) and a fixed value of b - a = E, the 
equilibrium state of the cylindrical layer (2.1) reduces to the equilibrium state of the 
plane layer (3.1). Thus, it is useful to compare the critical Marangoni numbers correspon- 
ding to these states. To do this, we need to set 

Ma~ = 2 (i - -  d 3) Ma ( 3 . 8 )  

and to  c o n s i d e r  t h a t  a = k d / ( 1  - d ) ,  m = k d / ( 1  - d ) ,  Bi = B i p / ( 1  - d ) ,  We = Wep/(1 - d ) .  

I n s e r t i n g  Ma from Eq. ( 2 . 5 )  or  ( 2 . 7 )  i n t o  ( 3 . 8 )  and h a v i n g  d a p p r o a c h  u n i t y ,  we o b t a i n  
t h e  Marangoni  number ( 3 . 7 )  in  t h e  l i m i t ,  i . e . ,  l ! m M a p =  Map 

d ~ l  

F i g u r e  6 shows c u r v e s  o f  Map* c a l c u l a t e d  from Eq. ( 3 . 8 )  a t  Bip = 2, Wep = ~. For  c u r v e  
1, d = 0 .1  and t h e  minimum Map = - 3 3 3 . 2 ,  k = 2 .23 .  For  c u r v e  2, d ~ 0 . 5 ,  Ma~ = 2 3 7 . 2 ,  k = 
2 . 1 8 .  For  c u r v e  3, d = 0 . 9 5 ,  Map = 2 0 9 . 2 ,  k = 1 . 9 8 .  Curve 4 c o r r e s p o n d s  t o  t h e  p l a n e  l a y e r ,  
when d = 1. I t  can be seen  from F i g .  6 t h a t  t h e  minima o f  t h e  c u r v e s  f o r  t h e  c y l i n d r i c a l  
l a y e r  a r e  g r e a t e r  t h a n  t h e  minimum o f  t h e  c u r v e  f o r  t h e  p l a n e  l a y e r .  Thus,  t h e  e q u i l i b r i u m  
s t a t e  o f  t h e  c y l i n d r i c a l  l a y e r  i s  more s t a b l e  a g a i n s t  a x i s y m m e t r i c  p e r t u r b a t i o n s  t h a n  t h e  
e q u i l i b r i u m  s t a t e  o f  t h e  p l a n e  l a y e r .  
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